
Parallel Computing Strategies

for Irregular Algorithms

RUPAK BISWAS

NASA Ames Research Center

LEONID OLIKER and HONGZHANG SHAN

Lawrence Berkeley National Laboratory

Parallel computing promises several orders of magnitude increase in our ability to solve realistic
computationally-intensive problems, but relies on their efficient mapping and execution on large-

scale multiprocessor architectures. Unfortunately, many important applications are irregular and

dynamic in nature, making their effective parallel implementation a daunting task. Moreover,
with the proliferation of parallel architectures and programming paradigms, the typical scientist

is faced with a plethora of questions that must be answered in order to obtain an acceptable

parallel implementation of the solution algorithm. In this paper, we consider three representative
irregular applications: unstructured remeshing, sparse matrix computations, and N-body prob-

lems, and parallelize them using various popular programming paradigms on a wide spectrum of

computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the

underlying problems, the solution algorithms, and the parallel implementation strategies. Smart

load-balancing, partitioning, and ordering techniques are used to enhance parallel performance.

Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

Keywords: Unstructured mesh adaptation, sparse matrix computations, N-body problems, dy-

narnic load balancing, data ordering, message passing, shared-memory directives, multithreading,
PC cluster

1. INTRODUCTION

Parallel computing promises several orders of magnitude increase in our ability

to solve realistic computationally-intensive problems, but relies on their efficient

mapping and execution on large-scale multiprocessor architectures. Unfortunately,

many important applications are irregular and dynamic in nature, making their

effective parallel implementation a daunting task. Irregular applications are char-

acterized by non-uniform data access patterns that are inherently at odds with

cache-based systems which attempt to hide memory latency by copying and reusing

contiguous blocks of data. Dynamic irregular applications are even more challeng-

ing since they have computational workloads which grow or shrink at runtime, and

require dynamic load balancing to achieve algorithmic scaling on parallel machines.

Authors' addresses:

: Rupak Biswas, NASA Advanced Supercomputing (NAS) Division, NASA Ames Research Center,

Mail Stop T27A-1, Moffett Field, CA 94035, U.S.A.

Leonid Oliker, National Energy Research Scientific Computing Center (NERSC), Lawrence Berke-
ley National Laboratory, Mall Stop 50F, Berkeley, CA 94720, U.S.A.

Hongzhang Sham, National Energy Research Scientific Computing Center (NERSC), Lawrence

Berkeley National Laboratory, Mail Stop 50F, Berkeley, CA 94720, U.S.A.

R. Biswas, L. Oliker, and H. Shah

In this paper, we consider three representative irregular applications: unstructured

remeshing, sparse matrix computations, and N-body problems.
In addition to these application-specific issues, the proliferation of parallel ar-

chitectures and programming paradigms requires the typical scientist to answer

a plethora of questions in order to obtain an acceptable parallel implementation
of the solution algorithm. This paper examines four popular parallel program-

ming paradigms: message passing using MPI, shared memory using OpenMP-style
directives, hybrid MPI+OpenMP, and hardware-supported multithreading. The

different parallel implementations are tested on a wide spectrum of computer plat-

forms: Cray T3E, SGI Origin2000, IBM SP, Cray (formerly Tera) MTA, and a PC

cluster.

We present the underlying problem, the solution algorithm, and the various par-

allel implementation strategies for each of the three irregular applications. Most

modern computer architectures, based on deep memory hierarchies, show accept-

able performance for irregular computations only if users care about the proper
distribution and placement of data. Single-processor performance depends criti-

cally on the exploitation of locality, and parallel performance degrades significantly

if inadequate data partitioning causes excessive communication. As a result, smart
load-balancing, partitioning, and ordering techniques are required to enhance paral-

lel performance; however, the exact nature depends on the programming paradigm
and the architecture.

The remainder of this paper is organized as follows. In Section 2, we give a

brief description of the three irregular algorithms that we investigated. The various

programming paradigms and computational platforms are described in Section 3.
Specific implementation details and performance results are presented in Section 4.

Finally, Section 5 concludes the paper with some closing remarks and observations.

2. IRREGULAR ALGORITHMS

In this section, we give a brief overview of the three irregular algorithms that we

investigated as part of this work. Unstructured Remeshing and N-Body Problems
are two typical irregular applications that are also dynamic in that the processor

workloads and the interprocessor communication can change drastically over time;

thus, dynamic load balancing is a critical component. Sparse Matrix Computa-

tions constitute our third irregular application and are essentially static unless the

underlying computational mesh undergoes adaptation; however, performance can

be significantly enhanced via smart ordering of the matrix elements. In any case,
all three applications are characterized by irregular data access patterns that are

inherently at odds with cache-based systems that attempt to hide memory latency

by copying and reusing contiguous blocks of data.

2.1 Unstructured Remeshing

Unstructured meshes for computational science and engineering problems allow

robust and automatic grid generation around highly complex geometries. Further-

more, the ability to dynamically adapt such unstructured meshes is a powerful tool

for efficiently solving problems with evolving physical features. Standard fixed-mesh

numerical methods can be made more cost effective by locally refining and coarsen-

ing the mesh to capture these phenomena of interest. Highly localized refinement

Parallel Computing Strategies for Irregular Algorithms 3

regions are required to accurately capture shock waves, contact discontinuities, vor-

tices, and shear layers. Unfortunately, an efficient parallelization of adaptive un-

structured remeshing is rather difficult, primarily due to the load imbalance created

by the dynamically-changing nonuniform grids.

In this work, we consider a two-dimensional unstructured remeshing algorithm

based on triangular elements; complete details of the three-dimensional procedure

are given in [5], [21]. Briefly, local mesh adaptation involves adding vertices to

the existing grid in regions where some user-specified error indicator is high, and

removing vertices from regions where the indicator is low. The advantage is that

relatively few vertices need to be added or deleted at each remeshing step; however,

complicated logic and data structures are required to keep track of the mesh objects

(vertices, edges, elements). It involves a great deal of pointer chasing, leading to

irregular and dynamic data access patterns.

A triangular element can be refined in different ways; however, the most popular

strategy is to bisect all three of its edges. This type of subdivision is called isotropic;

however, a refined mesh will be nonconforming unless all its triangles are isotrop-

ically subdivided. To obtain a consistent triangulation without global refinement,

anisotropic subdivision is allowed. That is, a triangle can be subdivided into two

(three) smaller triangles by bisecting one (two) edge(s). Isotropic and anisotropic

refinements of a triangle are shown in Figure i. The process of creating a consistent

triangulation is called a closure operation, which may require several iterations if

refinement propagation is allowed.

Fig. 1. Isotropic and anisotropic refinements of a triangle.

In a parallel environment, sophisticated dynamic load balancing techniques must

be employed as the computational workload and the communication volume grow

and shrink nonuniformly at runtime depending on the adaptation. We used the

METIS graph partitioner [16] for this work because of its good overall performance

and wide availability. It uses a multilevel algorithm consisting of three main steps:

coarsen the graph to be partitioned, partition the coarse graph, and project the

partitioned graph back to the original graph. During the coarsening phase, METIS

gradually reduces the size of the graph by collapsing vertices using a heavy edge

matching scheme. A greedy graph growing algorithm is then used to partition the

coarsest graph. This partitioned coarse graph is finally uncoarsened back to the

original using a combination of boundary greedy and Kernighan-Lin refinement [17]

to further reduce the overall edgecut and improve the load balance.

2.2 Sparse Matrix Computations

Unlike the adaptive dynamic unstructured remeshing algorithm discussed in the

previous section, our second application is static but still irregular as it deals with

R. Biswas, L. Oliker, and H. Shan

the process of obtaining numerical solutions for sparse linear systems defined over

unstructured meshes. In a way, unstructured remeshing is an enabling tool that

allows the efficient parallel solution of the governing partial differential equations

(PDEs) modeling the underlying physical problem of interest. A discretization of
the PDEs usually leads to large sparse matrices, for which special solution tech-

niques are normally used whenever the large number of zero elements are not stored.

Conjugate Gradient (CG) utilizes Krylov subspaees and is perhaps the most pop-
ular iterative algorithm [24] to solve large symmetric positive-definite sparse linear

systems of the form Ax = b. The method starts from an initial guess x0 of the
vector x. Since the convergence rate of CG depends on the spectral condition

number of the coefficient matrix A, it is typically used with a preconditioner for

ill-conditioned systems. One broad class of effective preconditioners is based on

incomplete LU (ILU) factorizations of A. For this work, we use the ILU(0) pre-
conditioner where all fill elements not at the nonzero positions of A are discarded.

For most practical applications, the sparse matrix-vector multiply and the triangu-
lar solves are the most expensive operations within preconditioned CG (PCG). An

outline of the PCG algorithm is given in Figure 2.

For an initial guess xo, compute ro = b - Axo, Po = zo = M-_ro

for j = 0, t,..., until convergence
c_j = (r_,z3)/(Apj,pj)

Xj_I_ 1 : Xj -_- otjpj

rj_t_ 1 = rj -- O_j Apj

zj+l : M-lrj+l

Z¢ = (r_+_, z_+_)/(_, z_)
Pj+I = zj4-1 + _jPj

endfor

Fig. 2. The preconditioned Conjugate Gradient algorithm.

Partitioning the sparse matrix is required on distributed-memory architectures,
but can be beneficial even on shared-memory machines by enforcing data locality.

With graph partitioning, some level of data locality is indirectly achieved by min-

imizing interprocessor communication, but not at the cache level. On the other

hand, special ordering strategies can be used to improve the profile of a matrix,

thereby enhancing the efficiency of the solution algorithms. We investigated both

these techniques in our experiments.

Partitioners attempt to improve data locality by minimizing interprocessor com-

munication; improving cache performance is usually not an objective. We used the

METIS multilevel graph partitioner [16] for the experiments in this paper. Details

about METIS have been given earlier in Section 2.1.

Linearization is extremely effective in enhancing cache performance. Special num-

bering techniques have considerably improved the efficiency of sparse matrix com-

putations. Cuthill and McKee [8] proposed a simple algorithm, called CM, based

on ideas from graph theory. Levels of increasing distance from a pseudoperipheral
vertex are first constructed. The enumeration is then performed level-by-level with

increasing vertex degree within each level. In this work, we used a popular variation

Parallel Computing Strategies for Irregular Algorithms 5

called reverse Cuthill-McKee (RCM) [10] that further improves the matrix profile
by reversing the CM ordering.

Unlike the CM algorithms that operate on a pure graph, one could use space-

filling curves (SFCs) to linearize objects in a higher dimensional space. For example,
an SFC can easily order all the hexahedral elements of a three-dimensional struc-

tured grid. Furthermore, the serialization of hierarchically adaptive structured grids
using an SFC enhances data locality, and therefore improves cache reuse, for mesh

and graph problems. However, for unstructured grids, an SFC introduces an arti-
ficial structure in that the construction depends on the embedding. To overcome

this drawback, a novel approach called self-avoiding walk (SAW) [12] that uses a
mesh-based technique has been recently developed.

In two dimensions, a SAW visits all the triangular elements exactly once such

that two consecutive triangles (in the SAW) share an edge or a vertex. A SAW goes

over vertices only when the triangles following one another in the enumeration do

not share an edge. The construction complexity is linear in the number of triangles;
however, SAWs can be easily generated in parallel for hierarchical adaptation as

they can be rebuilt purely locally. Note that a SAW is not a Hamiltonian path;

however, Hamiltonicity of the underlying dual graph implies the existence of a SAW

that goes only over edges.

2.3 N-Body Problems

The N-body problem is a classical one, and arises in many areas of science and

engineering such as astrophysics, molecular dynamics, computer graphics, and fluid

dynamics. Having specified the initial positions and velocities of N interacting

particles, the problem is to find their positions after a certain period of time. Since

there are potentially O (N 2) interactions every time step, any naive algorithm will

have extremely poor performance. In addition, it may incur memory limitations,

unbalanced workloads, and poor computation-to-communication ratios. It is an

excellent example from the class of dynamic irregular applications.

The Barnes-Hut algorithm [1] is a widely-used method to solve this problem.

It reduces the number of interactions to 0 (N log N) by partitioning the particles

into space-separated clusters. It is able to accomplish this improvement by taking
advantage of the locality inherent in space partitioning: groups of particles far

from one another can approximate their effect on each other instead of calculating

it precisely for every particle. Figure 3 shows a simple two-dimensional example of
36 particles partitioned among 4 processors with each leaf cell containing at most

4 particles.

There are three primary phases within each iteration of the Barnes-Hut algo-

rithm. In the tree building phase, an octree is constructed to represent the spa-

tial distribution of the particles. It is implemented by recursively partitioning the

three-dimensional space into eight subspaces until the number of particles in each

subspace is below a certain threshold. In the second phase, the force interactions

between individual particles are computed. Each particle traverses the octree start-

ing from the root. If the distance between a particle and the visited subspace (cell)

is large enough, the entire subtree rooted there is approximated by the cell; oth-

erwise, the traversal continues recursively with the children. In the third and final

phase, each body updates its position and velocity based on the computed forces

R. Biswas, L. Oliker, and H. Shan

°o_
o o,

[]

[] rn
[]

[]

O O •

INTERNAL CELL: ©

LEAF CELL: _ PARTICLE (by processor): • [] • O

Fig. 3. A simple example of the Barnes-Hut algorithm applied to 36 particles that are partitioned

among 4 processors.

in preparation for the next iteration.

Basically, the algorithm requires all-to-all communication for global reduction

operations, and demonstrates unpredictable send/receive patterns. The force cal-

culation phase dominates the other phases; however, its performance is critically

dependent on the quality of the tree building phase because the space partitioning

must successfully expose all reasonablc simplifications.

3. PROGRAMMING PARADIGMS AND COMPUTATIONAL PLATFORMS

Over the last five years, a few different parallel architectures have emerged, each

with its own set of programming paradigms. Even though many of these comput-

ing platforms support multiple programming models, they each have a preference

for the one that naturally maps to the underlying architecture. In the following

subsections, we give a brief description of the four leading programming paradigms

and the five computational platforms that we used for the experiments reported in

this paper.

3.1 Programming Paradigms

At this time, the four most popular programming paradigms are message passing,

shared-memory programming, a hybrid model that combines the message-passing

and shared-memory paradigms, and multithreading. We briefly discuss each of

these programming models below.

3.1.1 Message Passing. Parallel programming with message passing is the most

common and mature approach for high-end parallel computers. On distributed-

memory architectures, each processor has its own local memory that only it can

directly access. All other accesses require a copy of the desired data to be explicitly

transferred across the network using a message-passing library such as MPI [18].

To run codes on these machines, programmers must decide how data should be dis-

tributed among the local memories, communicated between processors during the

course of the computation, and reshuffled when necessary for dynamic problems.

This model increases code complexity, particularly for irregular applications; how-

ever, the benefits lie in enhanced performance for coarse-grained communication

and implicit synchronization through blocking communication.

Parallel Computing Strategies for Irregular Algorithms

3.1.2 Shared-Memory Programming. Using a single-image shared-memory sys-

tem can immensely simplify the programming task compared to message-passing

implementations. In distributed shared-memory architectures, each processor has

local memory but also can directly access any memory location in the system.

Thus, parallel programs are relatively easier to implement by inserting compiler

directives into the code to distribute loop iterations and computational threads

among the processors. Currently, OpenMP [23] is the standard model that enables

programmers to develop shared-m'emory parallel applications. However, perfor-

mance may suffer from poor spatial locality of physically distributed shared data,

and portability is compromised as fine tuning is sometimes necessary to achieve

optimal efficiency.

3.1.3 Hybrid Programming. Recent advances in technology have led to the devel-

opment of parallel architectures that contain a larger number of networked SMPs.

Pure MPI codes can be easily ported to these clustered systems, since message pass-

ing is required among the SMP nodes. However, message passing within each SMP

may not be the most effective use of the system. A novel programming paradigm

combines two layers of parallelism: OpenMP shared-memory codes within each

SMP, and MPI message passing among the SMPs. This hybrid strategy allows

codes to potentially benefit from both fine-grained loop-level and coarse-grained

domain-level parallelism. It offers an advantage on systems where MPI is unop-

timized due to issues such as a poorly implemented communication layer within

an SMP, or because of hardware limitations. Unfortunately, it is currently unclear

whether the performance gains of this approach compensate for the increased pro-

gramming complexity and the loss of performance portability even though it may

be the best mapping to the underlying architecture.

Figure 4 shows a schematic of this hybrid programming paradigm. Two MPI

tasks (task1 and task2) are initiated on processors Pl and P2 of an 8-way SMP node.
Each MPI task then spawns four OpenMP threads, where each individual thread is

assigned to a processor. For example, task2 spawns thread23 which is assigned to

processor PT. For the experiments reported in this paper, each processor ran exactly

one thread. Threads spawned by the same task communicate implickly through
shared memory using OpenMP constructs. But threads spawned by different tasks

communicate explicitly using MPI.

thread1_p1_] thread1_] thread1_ threadli_p__5 thread2__2_] thread_ thread2_ thread

Fig. 4. A schematic of hybrid programming where an SMP node containing eight processors runs
two MPI tasks and four OpenMP threads per task.

R. Biswas, L. Oliker, and H. Shan

3.1.4 Multithreading. Multithreading is available both in software and in hard-

ware. Hardware-supported multithreading has lately received considerable atten-

tion as a promising way to hide memory latency in high-performance computers.

By tolerating memory latency and using low-level synchronization directives, multi-

threaded machines can potentially utilize a larger fraction of their processing power

while providing access to a large and uniform shared memory. Parallel programma-

bility is significantly simplified since the user has a global view of the memory,
and need not be concerned with data placement. These machines are therefore

particularly well-suited for irregular and dynamic applications.

3.2 Computational Platforms

We conducted our experiments on five different computing platforms. A brief de-

scription of each machine is given below.

3.2.1 Cray T3E. The Cray T3E is a distributed-memory machine and only sup-

ports the message-passing programming paradigm. Most of the MPI results pre-

sented in this paper were obtained on the 644-processor T3E at Lawrence Berkeley

National Laboratory. Each T3E node consists of a 450 MHz DEC Alpha pro-
cessor (900 Mflops peak theoretical floating-point speed), 256 MB of main mem-
ory, a 96 KB secondary cache, and is connected to other nodes through a three-

dimensional torus.

3.2.2 SGI Origin2000. The SGI Origin2000 is a scalable, hardware-supported

cache-coherent nonuniform memory access (CC-NUMA) system, with an aggressive
communication architecture. The hardware makes all memory equally accessible

from a software perspective by sending memory requests through routers located

on the nodes. Memory access time is nonuniform, depending on how far away the

word lies from the processor. The interconnection network is a hypercube, bounding
the maximum number of memory hops to a logarithmic function of the number of

processors. The machine supports MPI, OpenMP, and the hybrid MPI+OpenMP

programming paradigms. Our shared-memory implementations of the irregular

algorithms use SGI's native pragma directives, which create IRIX threads. Rewrites

to OpenMP are straightforward, but have not yet been done.
The performance results presented here were obtained on the 64-processor Ori-

gin2000 at NASA Ames Research Center. Each Origin2000 node is a symmet-
ric multiprocessor (SMP) containing two 250 MHz MIPS R12000 processors and

512 MB of local memory. Each processor also has separate 32 KB primary instruc-

tion and data caches, and a 2-way set-associative 4 MB secondary cache where only

it can fetch and store data. If a processor refers to data that is not in cache, there

is a delay while a copy of the data is fetched from memory. When a processor
modifies a word of data, all other copies of the cache line containing that word are

invalidated.

3.2.3 IBM SP. The hybrid architecture used in our experiments with sparse ma-

trix computations was the IBM SP system at San Diego Supereomputing Center

(SDSC). The machine is a cluster of 144 SMP nodes, containing a total of 1,152

processors. Each SMP is equipped with 4 GB of memory shared among its eight
222 MHz Power3 processors, and connected via a crossbar. Compared to traditional

Parallel Computing Strategies for Irregular Algorithms 9

shared-bus designs, the crossbar technology reduces bandwidth contention to main

memory. Each processor has a 64 KB 128-way set-associative primary cache, and

a 4 MB 4-way set-associative secondary cache with its own private bus. The SMPs

are connected to one another via an omega-type switching interconnect. Currently,

only a maximum of four MPI tasks are available within each SMP when using

this fast switch. The machine supports pure MPI and the hybrid MPI+OpenMP

programming paradigms. OpenMP is only available within each 8-processor SMP

node; thus, message passing is necessary to utilize all the processors.

For the N-body simulations, we used the IBM SP system in the NERSC Division

at Lawrence Berkeley National Laboratory. This machine is a cluster of 184 nodes,

each containing 16 processors and 16 GB of memory. Each processor is a 375 MHz

Power3+ with an 8 MB level 2 cache. Unlike the SDSC SP, all 16 MPI tasks

within an SMP can be used across the fast switch. There are no other significant

architectural differences between the two SP systems used in our study.

3.2.4 Cray MTA. Cray (formerly Tera) has designed and built the radically dif-

ferent MTA system that can accommodate up to 256 custom multithreaded proces-
sors. At every cycle, each processor context switches with zero overhead among as

many as 128 instruction streams, choosing from only those that are ready to execute

their next instruction. Furthermore, each stream can have up to eight outstanding

memory references, thereby increasing the processors' memory latency tolerance

to 1,024 cycles. Performance thus largely depends on having a large number of

concurrent computation threads.

The 8-processor 255 MHz MTA machine used for this work was installed at SDSC

in 1998. It has a 8 GB fiat uniform shared memory physically distributed across

several banks that are connected through a toroidal network to the processors. Be-

cause of a memory hashing scheme, logically adjacent words are placed on different

memory banks. Each word contains a full/empty bit which enables synchronization

among the threads via load/store instructions without operating system interven-

tion. Synchronization among threads may stall one of the threads, but not the

processor on which the threads are running since each processor can run multiple

threads. Explicit load balancing is avoided since the dynamic scheduling of work
to threads provides the ability of keeping the processors saturated. Finally, once a
code is written in the mult_threaded model, no additional work is required to run

it on multiple processors as there is no difference between uni- and multiprocessor
parallelism.

3.2.5 PC Cluster. The fifth and final platform that is becoming increasingly at-

tractive for high-end scientific computing are PC clusters. The one used for this

study is a cluster of eight 4-way 200 MHz Pentium Pro SMPs (a total of 32 pro-

cessors) located at Princeton University. Each of the 32 processors has separate

8 KB data and instruction primary caches, and a 4-way set-associative 512 KB sec-

ondary cache. Each node has 512 MB of main memory, runs Windows NT 4.0, and

is connected to other nodes via either the Myrinet [6] or the Giganet [11] network.

For such PC-SMP clusters, the preferred programming paradigm is not obvious.

Currently, message passing and software distributed shared memory (DSM) are

the two popular paradigms for these systems. The message-passing programming

model is built in software on top of Giganet by the VIA interface [31] using MPI/Pro

l0 R. Biswas, L. Oliker, and H. Shan

from MPI Software Technology, Inc. The selection of MPI/Pro allows us to avoid

a potentially poor implementation of the communication layer.

Page-based shared virtual memory (SVM) is one of the most common ways to

support software DSM on clusters. SVM provides replication and coherence at the

page granularity, uses a relaxed memory consistency model to alleviate problems

with false sharing and fragmentation, and provides multiple writer protocols to
enable more than one processor to locally modify copies of a page between syn-

chronizations. Recently, a new promising protocol for SVM called GeNIMA [2] has

been developed that uses general-purpose network interface support to significantly

reduce overheads. Our shared address space (SAS) programming model [14] uses

GeNIMA which is built on VMMC, a high-performance user-level virtual memory

mapped communication library [9]. VMMC itself runs on top of Myrinet.

However, since each node of the PC cluster has four processors, a more natural

programming paradigm could be SAS within an SMP while using MPI among the

SMP nodes. Here, the hardware supports cache coherence for the SAS codes, while
communication between SMPs relies on the network through message passing. The

benefits and drawbacks of this mixed programming strategy is similar to those

discussed for hybrid MPI+OpenMP in Section 3.2.3.

4. IMPLEMENTATION DETAILS AND PERFORMANCE RESULTS

In this section, we provide specific implementation details of our three irregular

applications using the different programming paradigms mentioned in Section 3.1.
Performance results are then presented on a variety of platforms that were described

in Section 3.2.

4.1 Unstructured Remeshing

The unstructured mesh used for the experiments in this paper is the one often used

to simulate flow over an airfoil (see Figure 5 for the coarse initial mesh containing

14,605 vertices and 28,404 triangles). At transonic Mach numbers, shocks form on

both the upper and lower airfoil surfaces that then propagate to the far field. Mesh

refinement is usually required in these regions as well as around the stagnation point

at the leading edge of the airfoil. This actual scenario is modeled by geometrically

adapting regions corresponding approximately to the locations of the stagnation

point and the shocks. This strategy allows us to investigate the performance of

the mesh adaptation and load balancing algorithms in the absence of a numerical
solver. After five levels of refinement, the mesh was more than 40 times larger and

consisted of 488,574 vertices and 1,291,834 triangles. The computational mesh after

the second refinement is shown in Figure 5.

4.1.1 Message Passing on the T3E,. The message-passing version of the unstruc-

tured remeshing algorithm was implemented in MPI within the PLUM frame-

work [3], [19]. PLUM is an automatic and portable load balancing environment,

specifically created to handle adaptive unstructured-grid applications. It differs
from most other load balancers in that it dynamically balances processor work-

loads with a global view. It repeatedly uses the dual graph of the initial mesh to

keep the connectivity and partitioning complexity constant during the course of an

adaptive computation. In addition, a fast heuristic remapping technique and an

Parallel Computing Strategies for Irregular Algorithms 11

Fig. 5. A close-up view of the initial triangular mesh around the airfoil (left) and after the second

refinement (right).

efficient bulk data movement strategy help PLUM minimize the data redistribution

cost.

PLUM consists of a partitioner and a remapper that load balance and redistribute

the computational mesh when necessary. After an initial partitioning and mapping

of the unstructured mesh, a solver executes several iterations of the application.

However, in the experiments reported in this paper, a solver was not used as we

wanted to focus only on the remeshing algorithm. The adaptation procedure then

marks edges for refinement or coarsening based on an error indicator. Again, only

refinement was performed in this work because of two reasons. First, the test ease

is a steady-state problem and does not really require mesh coarsening; and second,

coarsening per se does not bring in any additional irregularity to the problem. At

this point, it is possible to exactly predict the new mesh without performing the

adaptation, resulting in several beneficial side effects [19], [26]. Program control is

thus passed to the load balancer which uses a repartitioning algorithm to divide the

new mesh into subgrids. A variety of partitioners can be used within PLUM [4];

in this work, we use the METIS [16] parallel partitioner. All necessary data is

then redistributed, the computational mesh actually refined, and the simulation

restarted. In short, there are three major steps in parallel remeshing: refinement,

repartitioning, and remapping. Figure 6 gives a high-level overview of the simplified

version of the entire PLUM iterative process.

In the MPI implementation (extensive details can be found in [21]), each processor

owns a submesh and maintains the local data structures to represent it. Thus, each

mesh object (vertex, edge, element) has a local index. To exchange information with

neighbors, each processor also maintains a mapping between its local index and the

global index, which is the index of the mesh object in the global mesh. Generating

and maintaining these indices for a dynamic irregular application is non-trivial. The

coarsening phase of the parallel METIS partitioner is also somewhat complicated.

To find a match for vertices on partition boundaries, a try-confirm strategy is used.

This is because a message must be received from the remote processor to confirm

the matching as other processors may also be trying to match their own boundary

vertices with the same vertex. Finally, during the METIS uncoarsening phase, each

processor reconsiders the ownership of its boundary vertices to reduce the overall

12 R. Biswas, L. Oliker, and H. Shan

INITIALIZATION MESH ADAPTOR LOAD BALANCER

Fig. 6. Unstructured remeshing with dynamic ioad balancing using the PLUM framework.

edge cut and improve the quality of load balance. Due to private address spaces

in MPI and the lack of global information, these decisions are made based on an

incomplete view.

Several options may be set within PLUM, including predictive or non-predictive

refinement, global or diffusive partitioning, and synchronous or asynchronous com-

munication. Table 1 presents the results for the best combination of these op-

tions (predictive refinement, global partitioning, asynchronous communication) on

a T3E, through five refinement levels.

Table 1. Runtimes (in seconds) using MPI on the T3E.

REMESH

P Refine Partition Remap Total

32 0.604 1.029 2.018 3.651
64 0.307 0.912 0.969 2.188

128 0.162 1.045 0.525 1.732

256 0.088 1.784 0.279 2.151

Observe that the refinement time decreases as the number of processors increases,

since there is less work per processor and little communication in the refinement

phase. However, the speedup values become progressively poorer due to the uneven

distribution of refinement workloads across the processors. This is expected since

our load balancing objective is to produce a balanced mesh for the more expensive

solver phase. On the other hand, partitioning times eventually increase with the

number of processors because the amount of work and the communication overhead

of the partitioner increases superlinearly. A scalable repartitioner would obviously

improve the overall parallel performance significantly. However, load balancing

quality is excellent, with imbalance factors ranging from 1.05 to 1.16 between 32

and 256 processors. Finally, the data remapping time decreases with the number

of processors while satisfying our bottleneck communication model which expresses

remapping cost as a function of the maximum (not total) communication among

processors [19].

Parallel Computing Strategies for Irregular Algorithms 13

4.1.2 Shared-Memory Programming on the Origin2000. Unlike the MPI imple-

mentation, a single complete shared mesh is maintained in the shared-memory

version. A potential drawback of this strategy is that the shared data structures

cannot be easily changed without synchronization. This is a critical issue since

mesh refinement involves modifying several data structures by inserting new mesh

objects and altering their relationships. The synchronization need can be dramati-

cally reduced by letting each processor precompute its number of new mesh objects,

and applying the range to the global data structures. This enables the processor

to modify within its own range with only a few synchronizations, but at the cost

of some additional complexity.

The shared-memory implementation on the Origin2000 must also take advantage

of the machine's CC-NUMA feature in order to achieve scalable performance [20].

Using a partitioner rather than simply splitting the data structures guarantees that

each processor is assigned a continuous submesh to work on, and that synchroniza-

tion is only needed on the subdomain boundaries. This greatly reduces the number

of synchronization operations, and allows each processor to obtain good temporal

and spatial data locality.

A dynamic load balancer is much simpler to implement in shared-memory pro-

grams since all processors share the same global view. In addition, it enhances data

locality, thereby reducing contention as well as the number of cache misses and page

faults. The MPI try-confirm process in METIS is also no longer required as the

communication to check for matchability is replaced by synchronization. When a

processor finds a matching vertex, it first locks it and then checks whether it has

already been matched. The initial partitioning is straightforward because of the

shared address space. Finally, when updating the ownership of boundary vertices

during the uncoarsening phase, all decisions are made based on a consistent global

view, which helps generate more balanced partitions.

No explicit data remapping is necessary for program orchestration in the CC-

NUMA implementation. We therefore allowed the unstructured remeshing process

to progressively become more unbalanced. This strategy would not work in a hybrid

environment since eventually all the memory could be exhausted on a single node
although the total requirements are satisfiable. Even on distributed shared-memory
systems, this strategy could disproportionately increase the mesh refinement times.

However, it does show the possible flexibility of shared-memory platforms since

one has the choice of remapping the mesh or not. A more general shared-memory

implementation would include a remapping phase, but it has not been done at this
time.

Runtimes for the CC-NUMA code on the Origin2000 are presented in Table 2.

For the purpose of comparison, results for the MPI version running on the Ori-

gin2000, with data remapping after each repartitioning, are also presented. Notice

that the refinement times are significantly higher for the shared-memory code. This

is because the quality of load balance deteriorates in the absence of explicit data

remapping. Refinement speedups are also poorer because the load balance prob-

lem is exacerbated with an increase in the number of processors. However, the

partitioning times are better than those for the original MPI version of METIS; a

remarkable feat given the modest amount of effort that has gone into developing

the shared-memory version. The load imbalance factors range from 1.02 to 1.05

14 R. Biswas, L. Oliker, and H. Shan

Table 2. Runtimes (in seconds) on the Origin2000.

REMESH

MPI

P Refine

16 1.725

32 1.727

64 2.233

CC-NUMA

Partition Remap

0.559 0.000

0.705 0.000

1.196 0.000

Total Refine Partition Remap Total

2.284 0.610 0.568 2.110 3.288

2.432 0.302 0.764 1.467 2.533

3.429 0.225 1.533 1.146 2.904

between 16 and 64 processors for CC-NUMA compared to 1.04 to 1.13 for MPI

while the number of edge cuts is about 20% higher for CC-NUMA. Overall, the

total runtimes are comparable even though the implementations are fundamentally

different.

4.1.3 Multithreading on the MTA. Our multithreaded version of the mesh adap-

tation code uses low-level locks to prevent potential race conditions [20]. Basically,

when a thread processes a given triangle, it locks the corresponding vertices and

edges to prevent neighboring triangles from being simultaneously updated. The

load is implicitly balanced by the operating system, which dynamically assigns

triangles to threads. No partitioning, remapping, or graph coloring is therefore

required, greatly simplifying the programming effort.

Table 3 presents runtimes using 60 streams per processor on the MTA. The

number of streams is easily changed through a compiler directive. Results show

efficiencies of 97%, 92%, and 83% using 2, 4, and all 8 processors. As we increase the

number of processors, the number of active threads increases proportionately while

the runtimes become very small. As a result, a greater percentage of the overall

time is spent on thread management, causing a decrease in efficiency (Amdahl's

Law). Increasing the number of streams per processor reduces the overall runtime

but is also less efficient.

Table 3. Runtimes (in seconds) using multithreading on the MTA.

P REMESH

1 2.72

2 1.40

4 0.74

8 0.41

Another potential source of the degradation in efficiency are memory hot-spots

that occur when many streams attempt to access the same memory location. This

may be happening frequently within the mesh adaptation code, since multiple

streams are sharing edges and vertices of the triangles. Since an MTA memory

bank can only handle one reference approximately every 36 clock ticks, multiple

references to the same bank effectively become serialized. To help alleviate this

problem, a limited number of special hot-spot caches are provided in hardware,

which allow consecutive references to a single location every two clock ticks. Overall

however, we found that there is sufficient instruction- and thread-level parallelism

Parallel Computing Strategies for Irregular Algorithms 15

in the unstructured mesh adaptation code to tolerate the overheads of memory

access and lightweight synchronization, if enough streams can be used.

4.2 Sparse Matrix Computations

The sparse matrix A used for our experiments was generated from a two-dimensional

mesh containing 661,054 vertices and 1,313,099 triangles. Matrix element aij was

set to a random value in (0, I) if the distance between mesh vertices v_ and vj was
less than 4. Here, the distance between two vertices is defined to be the number

of edges on the shortest path connecting them. All other off-diagonal entries were

set to zero. This models a local discrete operator where each vertex communicates

with all of its neighbors that are no more than three edge lengths away. The

diagonal entries of A were set to 40 to make it positive definite. The CG algorithm
converged in exactly 13 iterations (tolerance set to 10-15), with the unit vector as

the right-hand side b and the zero vector as the initial guess for x. For the PeG

experiments, the diagonal entries of A were reduced to I0, causing the original CG

to fail. However, the ILU(0) PCG algorithm successfully converged in exactly 18
iterations (tolerance again set to 10-15), given the modified matrix.

4.2.1 Message Passing on the T3E and the SP. On the T3E, we use the parallel

CG routine, called AZ_cg, in the Aztec library [30], which is implemented in MPI.

The matrix A is partitioned into blocks of rows, with each block assigned to one pro-

cessor. The associated components of vectors x and b are distributed accordingly.

Communication may be needed to transfer some components of x; packing several

components into one message minimizes the total number of messages. However,

this optimization can be performed in a pre-processing phase.

Timing results for AZ_cg in Table 4 show that SAW is always more than twice

as fast as RCM and METIS, which are themselves comparable. Both RCM and

METIS, in turn, are almost twice as fast as ORIG (the default ordering of the mesh

generator) when using 16 or more processors. However, METIS, RCM, and SAW,

all demonstrate excellent scalability (more than 75% efficiency) up to the 64 pro-

cessors that were used for these experiments, but ORIG seems less scalable (only

about 56% efficiency). ORIG has another critical drawback: it requires almost two
orders of magnitude more time to initialize the data structures and the eommuni-

cation schedule [22]. This indicates that the ORIG ordering is too inefficient and

unacceptable on distributed-memory machines.

Table 4. Runtimes (in seconds) of CG using MPI on the T3E.

CG
P ORIG METIS RCM SAW

8 8.652 7.662 6.185 2.916
16 5.093 2.909 3.198 1.491
32 3.167 1.468 1.662 0.795
64 1.929 0.961 0.882 0.462

• Although Aztec is a powerful iterative library, it does not provide a global ILU(0)

factorization routine. Thus we had to use the BlockSolve95 software library [15]

16 R. Biswas, L. Oliker, and H. Shan

to conduct the message-passing PCG experiments. BlockSolve95 itself reorders

the input matrix to achieve scatable performance. First, the graph is reduced by

extracting cliques and identical nodes (i-nodes), allowing the use of higher-level
BLAS. Next, the reduced graph is colored, and the vertices grouped and ordered

sequentially by color. We therefore investigate what effect, if any, our ordering

strategies have on the parallel performance of PCG.
We could not port BIockSolve95 to the T3E because of the large number of MPI

tags it requires; hence, our message-passing PCG experiments were conducted on
the SP machine. Table 5 presents the runtimes of the BlockSolve95 BSpar_solve

PCG routine using various partitioning and ordering strategies. Results clearly

show that the initial ordering of the matrix plays a significant role in PCG perfor-

mance, even though the matrix is further reordered by the BlockSolve95 library.
Notice that RCM and SAW have an advantage over METIS; however, all three

schemes are about an order of magnitude faster than ORIG.

Table 5. Runtimes (in seconds) of PCG using MPI on the SP.

[PCG

P OPdG METIS RCM SAW

8 96.41 22.44 14.63 11.60
16 64.23 9.67 7.44 7.29

32 14.75 5.97 4.14 3.88

64 15.11 3.67 2.36 2.46

4.2.2 Shared-Memory Programming on the Origin2000. As in Section 4.1.2, we

exploit the CC-NUMA feature of the Origin2000 by performing an intelligent initial
data distribution. Sections of the sparse matrix A are appropriately mapped onto

the memories of their corresponding processors using the default "first touch" data

distribution policy. However, the computational kernel is still much simpler to

implement than the MPI version. Table 6 shows the CG runtimes using the ORIG,

RCM, and SAW orderings of the mesh. As a basis for comparison, we also present
runtimes for an MPI implementation on the Origin2000 with the SAW ordering.

The PCG algorithm has not yet been implemented in shared-memory mode as
it would require sophisticated graph dependency analysis similar to that in the

BlockSolve95 library.

Table 6. Runtimes (in seconds) of CG on the Origin2000.

CG
CC-NUMA MPI

P ORIG RCM SAW SAW

8 9.824 5.575 5.516 3.815

16 6.205 2.845 2.872 1.926

32 3.584 1.548 1.514 1.075

64 2.365 0.885 0.848 0.905

Parallel Computing Strategies for Irregular Algorithms 17

Observe that the RCM and SAW schemes reduce the runtimes compared to

ORIG, indicating that an intelligent ordering algorithm is necessary to achieve

good performance and scalability on distributed shared-memory systems. There

is little difference between RCM and SAW performance because both techniques

reduce the number of secondary cache misses and the non-local memory references

of the processors. Recall however from Section 4.2.1 that on the T3E, SAW was

about twice as fast as RCM. This performance difference is probably due to the

larger cache size of the Origin2000 that reduces the individual effects of the two

ordering strategies.

The last two columns of Table 6 compare the CC-NUMA and MPI implemen-

tations of CG on the Origin2000 using the SAW ordering. The runtimes are quite

comparable, even though the programming methodologies are very different. This

indicates that for this class of applications, it is possible to achieve message-passing

performance using shared-memory constructs, through careful data ordering and

distribution.

4.2.3 Hybrid Programming on the SP. For the hybrid implementation of the CG

algorithm on the SP, we added 0penMP directives to the Aztec MPI library [30].

A total of eight key loop nests were identified via profiling and subsequently paral-

lelized. To achieve the best possible OpenMP performance, dense vector operations

were performed with the threaded vendor-optimized BLAS from IBM's Engineer-

ing Scientific Subroutine Library (ESSL). For the same reasons as mentioned in

Section 4.2.2, a hybrid PCG implementation is not considered in this paper.

Results are presented in Table 7 for varying numbers of SMP nodes, MPI tasks,

and OpenMP threads. Due to limitations in the current switch architecture of the

SDSC's SP, the maximum number of MPI tasks is limited to four on each SMP.

In addition to ORIG, METIS, RCM, and SAW, a new hybrid scheme comprised of

METIS+SAW is presented. This new approach is particularly promising for hybrid

architectures. Here, the graph is first partitioned into the appropriate number of

MPI tasks using METIS. Next, a SAW ordering is performed on each individual

subdomain in parallel.

Table 7. Runtimes (in seconds) of CG using MPI+OpenMP on the SP:

P Nodes Tasks

16 2 1

2 2

2 4

4 4

32 4 1

4 2

4 4

8 4

64 8 1

8 2

8 4

Threads ORIG

3.375

4.125

4.782

5.186

2.973

3.608

4.067

4.267

2.992

3.557

3.963

CG

METIS RCM SAW METIS÷SAW

1.926 1.217 1.139 1.118

1.366 1.071 1.018 0.992

1.472 1.084 1.019 1.006

0.965 0.986 0.914 0.902

0.870 0.651 0.678 0.617

0.709 0.618 0.593 0.581

0.723 1.120 0.680 0.649

0.586 0.607 0.580 0.569

0.473 0.391 0.390 0.372

0.452 0.690 0.442 0.407

0.466 0.798 0.495 0.460

18 R. Biswas, L. Oliker, and H. Shan

The METIS+SAW strategy consistently outperforms all others; however, it is

only marginally better than pure SAW linearization since cache behavior is sig-

nificantly more important than interprocessor communication for the CG algo-

rithm [22]. Nonetheless, we expect algorithms with higher communication require-
ments to benefit from this dual partitioning/ordering approach. Unfortunately, the

hybrid MPI+OpenMP implementation offers almost no noticeable advantage over

pure MPI while increasing programming complexity. We believe a pure MPI im-

plementation to be a more effective strategy for iterative sparse solvers on clusters
of SMPs. Similar conclusions have recently been drawn for other architectures and

application domains [7], [13], [22], [27].
The results in Sections 4.2.1, 4.2.2, and here, show that if the underlying mesh

were dynamically adapted, a new reordering would be required for efficient parallel

performance. Furthermore, a remapping would be necessary to appropriately redis-

tribute the corresponding submatrLx onto the processors. A significant overhead is
associated with these reordering and remapping phases [19], [20], [26], making the

CC-NUMA and the MPI+OpenMP strategies comparable to an MPI implementa-

tion. The major difference would be the use of a shared address space (global on an

Origin2000, local within an SMP node of an SP) instead of explicit message-passing
calls for interprocessor communication.

4.2.4 Multithreading on the MTA. The multithreaded implementation of CG on

the MTA required only compiler directives. Since the data structures are dynami-

cally allocated pointers, special pragma assertions were used to indicate that there

are no loop-carried dependencies. Load balancing is implicitly handled by the

operating system which dynamically assigns rows to threads. Results using 60

streams per processor are presented in Table 8. An efficiency of over 90% was
achieved for CG using the ORIG ordering, indicating that there is enough thread-

and instruction-level parallelism to tolerate the relatively high overhead of memory

access. Performance degrades slightly between four and eight processors because

with an increasing number of active threads, the runtimes become very small and

a greater percentage of the total time is spent on thread management.

Table 8. Runtimes (in seconds) using multithreading on the MTA.

CG PCG
P ORIG SAW ORIG

1 9.86 9.74 80.34
2 5.02 5.01 50.02
4 2.53 2.64 29.18
8 1.35 1.36 17.29

Notice that SAW ordering has a negligible effect on CG performance for this

cache-less machine. Thus, the programming and runtime overheads associated with

partitioning and linearization schemes are absent. Furthermore, reordering and

remapping are not required even if the underlying mesh is adapted. Thus, the MTA

has a distinct advantage over distributed-memory systems for irregular adaptive

applications.

Parallel Computing Strategies for Irregular Algorithms 19

For the PCG algorithm, we developed a multithreaded version of the lower and

upper triangular solves. Matrix factorization times are not reported since it is per-
formed only once outside the inner loop. Our multithreaded strategy uses low-level

locks to perform a dynamic dependency analysis. The lightweight synchronization

of the MTA allows locks to be effectively used at such a fine granularity. Spe-

cific implementation details can be found in [22]. Table 8 shows PCG performance

with the ORIG ordering, again using 60 streams per processor. A speedup of only

4.6X was achieved on eight processors. This limited scalability is due to the lack

of available thread-level parallelism in our dynamic dependency scheme. A large
fraction of the computational threads were blocked at any given time, preventing a

full saturation of the MTA processors. Further optimizations were not possible due

to limitations in the current system software. We plan to revisit the multithreaded

PCG once a more mature runtime system becomes available.

4.3 N-Body Problems

For the experiments in this paper, our data set consisted of one million particles and

simulates two neighboring Plummer model galaxies that are about to merge [29].

Figure 7 shows three snapshots during the collision and evolution process. In the

tree building phase of the Barnes-Hut algorithm, the dimensions of the root cell of

the octree are determined from the current positions of the particles. Whenever

the number of particles in a cell exceeds a given fixed number k (k = 8 in our

experiments), the cell is subdivided into eight smaller subcells. The particles in

the parent cell are then inserted into the appropriate subcell. In addition, each

particle keeps track of the number of operations it required in the force calculation

phase during the previous timestep. This information is used as a measure of the

workload. The initial workload is set to unity.

Fig. 7. Three snapshots during the collision and evolution of two Plummer model galaxies.

4.3.1 Message Passing on the T3E. The tree building phase is the most com-

plex step in the MPI implementation. To make the subsequent force calculation

phase communication free, each processor needs to build a locally essential tree.

The domain is first subdivided into cells, each containing a maximum number of

particles, that are distributed equally among the processors. A cost distribution

2O R. Biswas, L. Oliker, and H. Shan

tree is then computed in parallel, requiring global communication. The cost rep-

resents the expected workload of performing the force calculation for the particles

within a cell, and is used (instead of the number of particles) as the load balanc-

ing metric. If a cell's cost is greater (less) than a specified threshold, its space is
recursively subdivided (collapsed) into eight (one) subspaces. This timited global

tree is partitioned using the costzones technique [28], which assigns each processor
a contiguous range of ceils of approximately equal cost in Peano-Hilbert order [12].

A data remapper uses the computed partitions to distribute the ceils and their cor-

responding particles, thereby creating a cost balanced local tree on each processor.

A communication step is finally required to appropriately distribute the particle

and cell information, thus allowing each processor to build its locally essential tree.

Subsequent iterations use the previous distribution as the starting point.
As mentioned in Section 2.3, the force calculation is the most expensive phase

of the N-body problem. The MPI implementation uses the locally essential tree

to perform a load-balanced and communication-free force calculation. Each parti-
cle's cost is recorded in order to build the cost distribution tree in the subsequent

iteration. The message-passing version of the final update phase is also communi-
cation free, but suffers from some load imbalance because the costzones partitioner
is based on the cost, not the number, of particles. However, the computational

overhead of the update phase is a function of the total number of particles in each

partition. Fortunately, the time spent updating each particle's position and velocity

is negligible, and a repartitioning is not worthwhile.
Runtimes for the MPI version of the N-body simulation on the TaE are presented

in Table 9. The efficiency is a high 93% when going from 64 to 128 processors;

however, it drops to about 76Y0 between 128 and 256 processors. This is because as

the problem size remains fixed while using an increasing number of processors, the

communication-intensive tree building phase dominates the force computations.

Table 9. Runtimes (in seconds) using MPI on the T3E.

P N-BODY
64 10.95

128 5.88
256 3.88

4.3.2 Shared-Memory Programming on the Origin2000. The shared-memory ver-

sion of the N-body simulation was obtained from the SPLASH-2 suite [32], but is

further optimized. The tree building phase is significantly different from the MPI

implementation since only one global shared octree is created by concurrently in-

serting particles using synchronization locks, if necessary. When the cost of a cell

(defined in the cost distribution tree) exceeds a specified limit, the cell is dynam-

ically subdivided into eight new subcells. Note that on the Origin2000, explicit
communication is not required to compute the shared cost distribution tree. The

particles are then partitioned using the costzones technique [28] in the manner de-

scribed in Section 4.3.1. This strategy ensures cost-balanced partitions and good

Parallel Computing Strategies for Irregular Algorithms 21

data locality during the subsequent force calculation phase. The approach is al-

gorithmically similar to that used in the MPI version; however, a data remapping
phase is not required in the shared-memory implementation. Each processor is re-

sponsible for the particles assigned to it based on the costs calculated in the previous

iteration. Since all the particles are globally addressable, they can be reassigned to

the processors as necessary without the need for explicit communication.
Once the global shared tree is built, the force computations are performed in

parallel without the need for synchronization. However, unlike the MPI version,

implicit communication is required since the global tree is physically distributed
among the processors. The update phase can also proceed synchronization free in

parallel, but it too requires implicit communication. The CC-NUMA update phase

is somewhat load imbalanced, for the same reasons as the imbalance in the MPI

update. To increase data locality for the next iteration, particles are reordered based

on their processor assignment. The reordering step constitutes a small fraction of

the total runtime, which is dominated by the force calculation. Overall, the CC-

NUMA implementation is much simpler than that in MPI.

Sample performance results for the N-body simulation are presented in Table 10;

detailed information can be found in [26]. The runtimes for the CC-NUMA code

using a global shared tree are reported in the column titled GLOB_T. Runtimes

for an MPI implementation on the Origin2000 are also reported in the last column
as a basis for comparison. A thorough analysis of the results show that the total

execution time is dominated by the force calculation. However, the global shared

tree required for the CC-NUMA implementation is physically distributed across the

processors and requires implicit communication during the force calculation. This

causes page faults (TLB misses) and increases the memory latency. Instead, in

the MPI version, the time required to build the locally essential tree is negligible,

and the force computations are free of communication. Thus the MPI runtimes are

better than those for CC-NUMA when using 32 or more processors.

Table 10. Runtlmes (in seconds) on the Origin2000.

N-BODY

CC-NUMA MPI

P GLOB_T REPL_T

16 21.82 19.70 20.7'1

32 11.97 9.98 9.17

64 6.69 5.29 4.64

The performance of the GLOB_T shared-memory code can be improved dramat-

ically by locally duplicating a subset of the remote cells. However, this would not

be natural for shared-memory programming, but bring us closer to the message-

passing style of data replication. Each processor explicitly creates a local copy of

the remote cells which are frequently used during the force calculation. From our

experiments, we found that the duplication can be limited to the first four levels of

the tree, which contain approximately 590 (out of more than 366,000) cells. Results

for this improved implementation, called REPL_T, are also presented in Table 10.

22 R. Biswas, L. Oliker, and H. Shan

Note that these are better than those for GLOB_T, and much closer to the MPI

results. This indicates that for N-body problems, a shared-memory code can attain

message-passing performance through a smart implementation strategy.

4.3.3 Hybrid Programming on the SP. The current hybrid implementation was

obtained by adding OpenMP directives into the force calculation loop and the po-

sition (and velocity) update loop. Other than these differences, the hybrid code

is identical to the MPI version. One could also use OpenMP directives when new

subspaces are computed for the particles. However, since the time spent in this

stage is relatively negligible and the operations are primarily on shared variables,

the performance improvement is only marginal. In one of our early hybrid imple-

mentations, we incorporated the shared-memory tree building method into the MPI

code. Though the complexity of the code increased significantly, we did not obtain

any performance improvement.

Results are presented in Table ii for varying numbers of SMP nodes, MPI tasks,

and OpenMP threads on the SP machine. Notice that the best runtimes are ob-

tained (except for 256 processors) when the number of OpenMP threads is one;

that is, when the parallelization is purely MPI based. In fact, performance steadily

improves as the number of threads decreases for a fixed number of processors. We

therefore conclude that our hybrid implementation offers no advantage over pure

MPI for the N-body problem.

Table ii. Runtimes (in seconds) using MPI+OpenMP on the SP.

P Nodes

64

128

256

Tasks

4 I
4 2

4 4

4 8
4 16

8 I

8 2

8 4

8 8

8 16

16 i

16 2

16 4

16 8

16 16

Threads N-BODY

16 7.29

8 5.82

4 5.12

2 4.07

1 3.79

16 3.92

8 3.10

4 2.44

2 2.16

1 2.02

16 2.11

8 1.54

4 1.41

2 1.30

1 1.46

4.3.4 Message-Passing, Shared-Memory, and Hybrid Programming on the PC Cluster.

The MPI program used for the experiments in Section 4.3.1 was ported without

any changes to our PC cluster described in Section 3.2.5. However, the shared-

memory implementation required major modifications from the one described in

Section 4.3.2 since it suffered from a high synchronization overhead during the

shared-tree building phase on the PC cluster. A new tree building method, called

Parallel Computing Strategies for Irregular Algorithms 23

Barnes-spatial [25], has been developed to completely eliminate the expensive syn-

chronization operations.

We were unable to run the data set consisting of one million particles on our PC

cluster because of memory limitations. Instead, we used a smaller case consisting of

128K particles. Results presented in Table 12 show that the MPI version performs

much better than the shared address space (SAS) implementation, and is almost

twice as fast when executed on 32 processors. An analysis of the time breakdown

on 32 processors indicates that the synchronization overhead dominates the overall

SAS runtime. This is because at each synchronization point, many diffs and

write notices are processed by the page coherence protocol. Almost 82_ of the

barrier time is spent on protocol handling. Trying to maintain coherence requires

pages to be propagated to their home processors, leading to increased network

traffic and memory contention. In addition, a large number of shared pages are

invalidated, thereby dilating the synchronization interval. Together, they cause a

severe degradation in SAS performance.

Table 12. Runtimes (in seconds) on the PC cluster.

N-BODY

P MPI SAS MPI+SAS

16 6.21 8.20 8.09

32 3.24 6.10 6.08

We also tested a hybrid MPI+SAS implementation of the N-body problem on

the PC cluster. Two layers of parallelism are combined by implementing SAS

codes within each PC-SMP while using MPI among the SMP nodes. Here, the

hardware directly supports cache coherence for the SAS code segments, while inter-

SMP communication relies on the network through message passing. However,

code complexity increases dramatically since we incorporated the shared-memory

tree building method into the MPI code. Results presented in Table 12 show

that the hybrid implementation offers a small performance advantage over pure

MPI. This is due to tradeoffs between the two approaches. For example, while

SAS programming reduces the intra-SMP communication compared to MPI, it

requires the additional overhead of explicit synchronizations. Although this hybrid

programming methodology is the best mapping to our underlying architecture, it

is debatable whether the performance gains of this approach compensate for its

drawbacks. Nonetheless, PC clusters provide a cost-effective platform for solving

realistic problems with reasonable performance.

5. CONCLUSIONS

The goal of this paper was to present, compare, and contrast different parallel com-

puting strategies for irregular algorithms. Such algorithms exhibit non-uniform

data access patterns that axe particularly challenging for cache-based systems with

several levels of memory hierarchy. In addition, some of these algorithms are dy-

namic in that their computational workloads vary at runtime. We selected three

representative irregular applications: unstructured remeshing, N-body problems,

24 R. Biswas, L. Oliker, and H. Shan

and sparse matrix computations, and parallelized them using various programming

paradigms for a wide range of computer platforms ranging from state-of-the-art su-

percomputers to PC clusters. We used four popular parallel programming models:

message passing using MPI, shared memory using OpenMP-style directives, hybrid

MPI+OpenMP, and hardware-supported multithreading. The parallel implemen-
tations were then tested on a Cray T3E, SGI Origin2000, IBM SP, Cray (formerly

Tera) MTA, and a PC cluster.

The MPI versions demanded the greatest programming effort even though mes-

sage passing is the most common and mature approach for high-performance sys-
tems. Data had to be explicitly decomposed across processors and special data

structures had to be created to manage shared information along partition bound-

aries. Significant additional memory was also needed for the communication buffers.

Despite these drawbacks, the message-passing codes showed good scalability and

can be easily ported to any parallel system supporting MPI.

The CC-NUMA shared-memory versions required considerably less programming

effort, and also had low memory overhead. However, explicit data decomposition
wi_h smart remapping or replication was required to improve performance of our
irregular applications; a strategy that is counter-intuitive for shared-memory sys-

tems. As a result, some of the programming advantages over MPI must be given

up to obtain comparable performance.

The hybrid programming paradigm was the most complex as it combined two
layers of parallelism by implementing OpenMP shared-memory constructs within

an SMP while using MPI among the SMP clusters. However, the performance

improvements over pure MPI codes were negligible. Overall results clearly indicate

that in order to obtain good performance, the explicit data decomposition model

must be followed; it mattered little whether one used a shared address space or

explicit message-passing calls for interprocessor communication. It should also be

la ,i, icl_ la _ 11 ,I. i_b,,_. IJ 1 U b CL,I. U i_1_ 14 CIJ U.I. uel_ J.lJ._ e_lJJ.allbeu _ % J,. ,L '_1 _,. J. ,I..I. II_l • b "_ _V_. I_ltt U_u u U_ uu

programming paradigms.

The MTA with its hardware-supported multithreading was the most impressive

machine for our test suite of irregular algorithms. The implementations required a
trivial amount of additional code and had little memory overhead. The complexities

of data distribution, repartitioning, remapping, and load balancing were absent

on this system; however, the application must possess significant instruction- and

thread-level parallelism to extract all the benefits multithreading has to offer. Note

that the MTA is essentially an experimental architecture and has the least mature

hardware and software infrastructure.

Finally, we must acknowledge that PC clusters are becoming increasingly attrac-
tive for high-end scientific computing and that software DSM is gaining popularity

as a paradigm to operate distributed clusters as shared memory systems. Even

though absolute performance results are not quite competitive with those obtained

on commercial supercomputers, they provide a cost-effective platform for solving

realistic problems with reasonable performance.

Parallel Computing Strategies for Irregular Algorithms 25

ACKNOWLEDGMENTS

The work of the second author was supported by the Office of Computational and

Technology Research, Division of Mathematical, Information, and Computational

Sciences of the U.S. Department of Energy under contract DE-AC03-F6SF00098.

The work of the third author was supported by the National Science Foundation

under grant ESS-9806751 while he was at Princeton University.

REFERENCES

[1] J.E. BARNES AND P. HUT, A hierarchical O(N log N) force-calculation algorithm, Nature,

324 (1986) 446-449.

[2] A. BILAS, C. LIAO, AND J.P. SINGH, Using network interface support to avoid asynchronous

protocol processing in shared virtual memory systems, in: Prec. 26th International Sym-

posium on Computer Architecture (Atlanta, GA, 1999) 282-293.

[3] R. BISWAS, S.K. DAS, D.J. HARVEY, AND L. OLIKER, Parallel dynamic load balancing strate-

gies for adaptive irregular applications, Applied Mathematical Modelling, 25 (2000) 109-
122.

[4] R. BISWAS AND L. OL1KER, Experiments with repartitioning and load balancing adaptive

meshes, in: Grid Generation and Adaptive Algorithms, Springer, New York, NY, 1999,

89-111.

[5] R. BISWAS AND R.C. STRAWN, A new procedure for dynamic adaption of three-dimensional

unstructured grids, Applied Numerical Mathematics, 13 (1994) 437-452.

[6] N.J. BODEN, D. COHEN, R.E. FELDERMAN, A.E. KULAWIK, C.L. SEITZ, J.N. SEIZOVIC, AND

W.-K. Su, Myrinet: A gigabit-per-second local area network, IEEE Micro, 15 (1995)

29-36.

[7] F. CAPeELLO AND D. ETmMBLE, MPI versus MPI+OpenMP on the IBM SP for the NAS

benchmarks, in: Proc. Supercomputing'O0 (Dallas, TX, 2000).

[8] E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in: Proc.

2_th ACM National Conference (New York, NY, 1969), 157-172.

[9] C. DUBNICKI, A. BILAS, Y. CHEN, S. DAMIANAKIS, AND K. LI, VMMC-2: Efficient support for

reliable, connection-oriented communication, in: Prec. 5th Hot Interconnects Symposium

(Stanford, CA, 1997).

[10] A. GEORGE, Computer Implementation of the Finite Element Method, Technical Report

STAN-CS-208, Stanford University, Stanford, CA, 1971.

[11] OIOANET, INC., URL: _w.giganet.com.

[12] G. I-IEBER, R. BISWAS, AND G.R. GAO, Self-avoiding walks over adaptive unstructured grids,

Concurrency: Practice and Experience, 12 (2000) 85-109.

[13] D.S. HENTY, Performance of hybrid message-passing and shared-memory parallelism for dis-

crete element modeling, in: Proc. Supercomputing'O0 (Dallas, TX, 2000).

[14] D. JIANG AND J.P. SINGH, Scaling application performance on cache-coherent multiproces-

sors, in: Prec. 26th international Symposium on Computer Architecture (Atlanta, GA,

1999) 305-316.

[15] M.T. JONES AND P.E. PLASSMANN, BlockSolve95 User's Manual, Technical Report ANL-

95/48, Argonne National Laboratory, Chicago, IL, 1995.

[16] G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning

irregular graphs, SIAM Journal of Scientific Computing, 20 (1998) 359-392.

[17] B.W. KERNIGHAN AND S. LIN, An efficient heuristic procedure for partitioning graphs, Bell

System Technical Journal, 49 (1970) 291-308.

[18] MESSAGE PASSING INTERFACE FORUM, URL: www.mpi-forum.org.

[19] L. OLIKER AND R. BISWAS, PLUM: Parallel load balancing for adaptive unstructured meshes,

Journal of Parallel and Distributed Computing, 52 (1998) 150-177.

[20] L. OLIKER AND R. BISWAS, Parallelization of a dynamic unstructured algorithm using three

26 R. Biswas, L. Oliker, and H. Shan

leading programming paradigms, IEEE Transactions on Parallel and Distributed Sys-

tems, 11 (2000) 931-940.

[21] L. OLIKER, R. BISWAS, AND H.N. GABOW, Parallel tetrahedraI mesh adaptation with dynamic

load balancing, Parallel Computing, 26 (2000) 1583-1608.

[22] L. OLIKER, X. LI, P. HUSBANDS, AND 1_. B[S'vVAS, Effects of ordering strategies and program-

ming paradigms on sparse matrix computations, SIAM Review, 44 (2002) 373-393.

[23] OPENMP PROGRAMMING, URL: www.openmp.org.

[24] Y. SAAD, lterative Methods for Sparse Linear Systems, PWS, Boston, MA, 1996.

[25] H. SHAN AND J.P. SINGH, Parallel tree building on a range of shared address space multipro-

cessors: Algorithms and application performance, in: Proc. 12th International Parallel

Processing Symposium (Orlando, FL, 1998).

[26] H. SHAN, J.P. SINGH, L. OLIKER, AND R. BISWAS, A comparison of three programming

models for adaptive applications on the Origin2000, Journal of Parallel and Distributed

Computing, 62 (2002) 241-266.

[27] H. SHAN, J.P. SINGH, L. OLIKER, AND R. BmWAS, Message passing vs. shared address space

on a cluster of SMPs, in: Proc. 15th International Parallel and Distributed Processing

Symposium (San Francisco, CA, 2001).

[28] J.P. SINGH, J.L. HENNESSY, AND A. GUPTA, Implications of hierarchical N-body methods

for multiprocessor architectures, ACM Transactions on Computer Systems, 13 (1995)

141-202.

[9Q1 J.p. SINGH, C. HOLT, T. TOTSUKA, A. GUPTA, AND J. HENNESSY, Load balancing andt-v_
data locality in adaptive hierarchical N-body methods: Barnes-Hut, fast multipole, and

radiosity, Journal of Parallel and Distributed Computing, 27 (1995) 118-141.

[30] R.S. TUMINARO, M. HEROUX, S.A. HUTCHINSON, AND J.N. SHADID, OJficial Aztec User's

Guide, Technical Report SAND99-8801J, Sandia National Laboratories, Albuquerque,

NM, 1999.

[31] VIRTUAL INTERFACE ARCHITECTURE, URL: www.viarch.org.

[32] S.C. Woo, M. OHARA, E. TORRIE, J.P. SINGH, AND A. GUPTA, The SPLASH-2 programs:

Characterization and methodological considerations, in: Proc. 22nd International Sym-

posium on Computer Architecture (Santa Margherita Ligure, Italy, 1995) 24-36.

